Indian Statistical Institute Bangalore Centre B.Math (Hons.) III Year 2016-2017 First Semester Statistics III

Back paper Examination

Date: 29.12.16

Time: 3 hours

Answer as many questions as possible. The maximum you can score is 100.

All symbols have their usual meaning, unless stated otherwise.

State clearly the results you use.

- 1. Suppose $X_1, \dots X_n$ are independent normal variables with mean $\mu_1, \dots \mu_n$ and common variance σ^2 . Further, suppose X_0 also follows normal distribution with mean 0, variance σ^2 and $Corr(X_0, X_i) = \rho, 1 \le i \le n$. Define $Y_i = X_i aX_0, 1 \le i \le n$. Show that $(Y_1, \dots Y_n)'$ follows multivariate normal with covariance matrix of the form $aI_n + bJ_n$. [Here J_n is the $n \times n$ all-one matrix]. [10]
- 2. Consider the linear regression model $y_i = \alpha + \beta x_i + \epsilon_i$, $1 \leq i \leq n$. Here α, β are unknown constants, X_i 's are known constants and $\epsilon_i, i = 1, 2, \dots n$ are i.i.d normally distributed variables with mean 0 and variance σ^2 . Suppose

$$S_x^2 = \sum_{i=1}^n (x_i - \bar{x})^2,$$

 $S_y^2 = \sum_{i=1}^n (y_i - \bar{y})^2 \text{ and }$
 $S_{xy} = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}).$

- (a) Show that $E(S_{xy}^2) = \sigma^2 S_x^2 + \beta^2 S_x^4$.
- (b) Write down the expression for the error sum of squares (S_E^2) . Derive the distribution of S_E^2 without using any result of least square theory. [6 + (1 + 7) = 14]
- 3. Consider the linear model

$$Y(n\times 1) = X(n\times p)\beta(p\times 1) + \varepsilon(n\times 1)$$
, where $E(\varepsilon) = 0$, $Cov(\varepsilon) = \sigma^2 I_n$.

- (a) Suppose l is in \mathbb{R}^p . When is $l'\beta$ said to be estimable?
- (b) How does one find a least square estimate $(\hat{\beta})$ of β ? Is it always unique ?
- (c) Suppose $l'\beta$ is estimable. Show that
- (i) $l'\hat{\beta}$ is unbiased for $l'\beta$,
- (ii) $l'\hat{\beta}$ is unique and

(ii) it has minimum variance among all linear unbiased estimators of $l'\beta$.

$$[1 + (2 + 1) + (3 + 4 + 5) = 16]$$

4. Consider the model

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \ j = 1, 2, ..., b, \ i = 1, 2...a$$

- (a) For each of the following parametric functions, either provide an unbiased estimator or prove that it is not estimable. Assume $b \geq 3$.
 - (i) μ , (ii) β_1 , (iii) $7\alpha_1 5\alpha_2 2\alpha_3$.
- (b) Write down the model in the form $Y = X_0 \mu + X_1 \alpha + X_2 \beta + \varepsilon$, describing the matrices X_0, X_1, X_2
- (c) Show that the rank of $X = [X_0|X_1|X_2]$ is a + b 1

$$[(3 \times 3) + 3 + 5 = 17]$$

- 5. Suppose X follows $N_p(0, I_p)$ and A is a $p \times p$ symmetric matrix of rank r.
 - (a) Prove that a necessary and sufficient condition for X'AX to follow $\chi^2(r)$ is that A is idempotent.
 - (b) Suppose $l \in \mathbb{R}^P$. Show that if Al = 0, then l'X and X'AX are independent. [7 + 9 = 16]
- 6. (a) Define Wishart distribution. When is it called central?
 - (b) Suppose X_i , $i = 1, 2, \dots n$ are i.i.d. $N_p(0, \Sigma)$ and A is a $p \times p$ symmetric matrix.

Let
$$X(n \times p) = \begin{bmatrix} X'_1 \\ X'_2 \\ \vdots \\ X'_n \end{bmatrix}$$
.

Prove that a necessary and sufficient condition for S = X'AX to follow $W_p(n, \Sigma)$ is that $l'Sl/l'\Sigma l \sim \chi^2(r)$ for every $l \in \mathbb{R}^p$.

$$[2+10=12]$$

- 7. Suppose X_i , $i=1,2,\cdots n$ are i.i.d. $N_p(\mu,\Sigma)$. Define $S^2=\sum_{i=1}^n(X_i-\bar{X})(X_i-\bar{X})'$. Show that
 - (a) \bar{X} and S^2 are independent and
 - (b) $S^2 \sim W_p(n-1,\Sigma)$.

[10 + 5 = 15]